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Abstract— Collaboration between humans and robots re-
quires solutions to an array of challenging problems, including
multi-agent planning, state estimation, and goal inference.
There already exist feasible solutions for many of these
challenges, but they depend upon having rich task models.
In this work we detail a novel type of Hierarchical Task
Network we call a Clique/Chain HTN (CC-HTN), alongside an
algorithm for autonomously constructing them from topological
properties derived from graphical task representations. As the
presented method relies on the structure of the task itself,
our work imposes no particular type of symbolic insight into
motor primitives or environmental representation, making it
applicable to a wide variety of use cases critical to human-robot
interaction. We present evaluations within a multi-resolution
goal inference task and a transfer learning application showing
the utility of our approach.

I. INTRODUCTION

Combining user-friendly skill acquisition and robust
task-level planning in real-world systems is critical to
the widespread adoption of collaborative robots. While
demonstration-based training techniques inherently afford
ease of use, their informality comes at the expense of not
necessarily producing complete specifications of their skills’
intentions or environment effects [1]. On the other hand,
flexible planning systems are able to operate at varying levels
of abstraction to quickly produce efficient solutions [2].
These systems typically require either manually annotated
hierarchical structure or well-specified preconditions and
effects of their atomic-level planning components [3]. Just as
humans do not rely on explicit annotations or out-of-scenario
interventions, we expect competent robot partners both to
learn skill execution policies and to infer hierarchical task
structure from observation or experience.

In addition to producing acceptable sequences of skills,
planning systems represent an agent’s awareness of the task’s
underlying structure, allowing for adjustment in case of
unexpected deviation. While robots operating in isolation
may seek to minimize a cost function specified in terms of
effort or time required, it may be desirable for robot team-
mates to instead choose to optimize for flexible execution
or maximally supportive roles [4]. As such, collaborative
robots require a deeper understanding of tasks than their
isolated counterparts, and must be capable of reasoning about
and planning around potentially complex subtask assignment
and resource management constraints [5]. Therefore a robot
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Fig. 1: Collaboration relies on complex planning and in-
tention recognition capabilities. For many tasks, especially
within the assembly and cooking domains we base our
evaluations on, hierarchical models are required to identify
and solve tractable sub-problems.

becomes increasingly capable of adapting to changing cir-
cumstances by deferring decisions, mitigating both its own
failures and those of its partners as it learns more about
the underlying structure of a task. This is known as least-
commitment planning, an important concept in multi-agent
domains with uncertainty [6].

Effectively accomplishing tasks in collaborative domains
demands a high level of execution flexibility that can only
emerge through task comprehension. Manually providing
a robot with this kind of knowledge is difficult and time
consuming and does not scale well with increasing deploy-
ment of robots in the workforce or home. Mechanisms that
allow robots to build their own hierarchical interpretations
of tasks are central to addressing this issue. Thus, to build
collaborative, user-friendly, trainable robots, we require a
method of deriving hierarchical task structure. We present an
approach that autonomously does so by leveraging ordering
constraints and contextual knowledge from previously known
tasks to learn multiple levels of abstraction for arbitrary task
networks. We hold a minimal set of assumptions about skill
representations, allowing our work to be applied even to
systems trained solely with skills that lack rigidly defined
preconditions or effects (or other such formalization). The
primary contributions of this work are:

• Clique/Chain Hierarchical Task Networks (CC-HTNs),
a new type of HTN that encapsulates topological prop-
erties of a task’s action space.

• An algorithm for autonomously constructing CC-HTNs
from task graphs

• Evaluations of CC-HTNs within state estimation and
knowledge transfer for reinforcement learning domains



II. BACKGROUND AND RELATED WORK

Our contribution is targeted towards enabling robots to
model relationships between skills to facilitate high level
task reasoning. We provide a brief survey of Learning from
Demonstration, Markov Decision Processes, and Hierarchical
Task Networks to familiarize the reader with the techniques
that form the basis of our approach.

A. Learning from Demonstration

The acquisition of skills and task solutions from novice
users via demonstration, Learning from Demonstration
(LfD), is widely considered to be a simple and natural
method of robot training [7]. LfD is particularly useful due
to its vast applicability, as demonstrations can be effec-
tively provided via teleoperation [8], observation [9], and
kinesthetic teaching [10] to achieve task or skill proficiency.
Recent work has extended skill generalization within LfD,
a highly desirable property, by leveraging Bayesian non-
parametric models and dynamic movement primitives to
extract flexible skills from unstructured demonstrations [11].
This represents one potential opportunity for applying our
presented work, providing deeper task-level structure that
may not otherwise be emergent from the segmented trajecto-
ries produced by similar approaches. Notably, autonomously
obtaining complete and relevant symbolic groundings for
LfD-acquired skills is difficult, making such skills ineligi-
ble for proper inclusion into traditional symbolic planners.
Regardless, even if all effects or object properties relevant to
a motor primitive cannot be precisely specified, these skills
can still be utilized within policy-based learning techniques,
a primary motivation for our work. Our algorithm contributes
toward bridging this gap between symbolic abstraction and
low-level policy learning.

B. Markov Decision Processes

Graphical task representations are desirable for their ex-
pressivity. Markov Decision Processes (MDPs) provide a
convenient and efficient framework for planning.

The MDP framework, represented by the 4-tuple
(S,A,R, P ), defines an environment-centric directed multi-
graph with environmental knowledge encoded in vertices
representing possible states (s ∈ S). Directed edges between
vertices (transitions) are labeled with an action (a ∈ A).
R(s′|s, a) is the reward achieved by transitioning to state
s′ from state s via action a. P (s′|s, a) characterizes the
dynamics of the system, indicating the probability of arriving
in state s′ from state s when executing action a.

Semi-MDPs (SMDPs) are a variant that permits the cre-
ation of flexible, arbitrarily complex options: closed-loop
policies describing action sequences [12]. The temporal
abstraction (e.g., allowing actions have differing durations)
and generality of representation inherent to SMDPs make
them a popular method of representing knowledge about
actionable skills and tasks. As such, we represent tasks as
SMDPs throughout this work.

C. Hierarchical Task Networks

Hierarchical representations, particularly Hierarchical
Task Networks (HTNs) [13], have been developed to manage
the exponential complexity growth of realistic planning prob-
lems [14]. This highly effective approach consists of identify-
ing abstractions present within collections of primitive skills
or subtasks to reduce planning difficulty [15]. Primitives are
typically represented in a manner reminiscient of STRIPS
[16], containing symbolic representations of environmental
preconditions and effects.

HTNs scale more readily and are more expressive than
STRIPS-style planners [17]. HTN planners have been suc-
cessful in a wide variety of rich and complex problem
domains, including multi-agent team coordination in robot
soccer [18] and mobile robot exploration [19]. As such,
they are highly desirable task representations that serve a
multitude of important uses. In particular, AND/OR graphs
[20] (a type of HTN) have emerged as a popular choice
within multi-agent assembly domains [21], [22].

However, these hierarchical networks are typically as-
sumed to be manually specified or assume the availability of
rich domain knowledge and planning operator (action) de-
scriptions to facilitate their discovery [23], [24]. We present
a novel bottom-up approach to HTN generation without
prior manual intervention, building on the causality analysis
principles of Nehta et. al [25] and subgoal discovery of
Menache et. al [26] to find and abstract flexible subtasks.

III. CONSTRUCTING TASK HIERARCHIES

For an arbitrary task network, we present a general method
that builds hierarchical abstraction without manual interven-
tion or reliance on particular symbolic representations.

A. Constraint Analysis

As the learner discovers successful action sequences or
invalid state transitions within a task, insight into the struc-
ture of the task being performed increases. Given a graph
G = {V,E}, with vertices corresponding to environment
states and directed edges indicating available transitions
between them, we define a task execution x as a directed
graph induced by the path on G that is followed during the
execution of a particular valid sequence of motor primitives.
We define the set X as that consisting of all possible, efficient
(having no superfluous actions) task execution paths that
terminate in success (i.e., assumptions similar to [25]). Thus,
x = {Vx, Ex} ∈ X describes a sequence of actions, or in
other words a graph formed from a single path through a
set of vertices in Vx ⊆ V connected via edges in Ex ⊆
E that are labeled with actions a ∈ A, where A is a
dictionary of known primitive skills (options). Learning from
Demonstration provides a means to acquire these x quickly,
via instructor-provided examples. Alternatively, these x can
be generated by an automated planner with some degree of
stochasticity or exploration. More plainly, each graph x is
a chain of vertices linked by actions that results in task
completion. This forms a subgraph in the complete task
space defined by all possible states and action connections,



(a) Task graph (top) and its conjugate (bottom). In the task graph,
environment states are encoded in vertices and edges are labeled
with their corresponding actions. In the conjugate, subgoals are
represented as vertices and edges are labeled with environmental
prerequisites.

(b) Incremental execution of Algorithm 2, from CTG (top) to CC-
HTN (bottom). For clarity, we omit edge prerequisite conditions.
The internal node labels on the final CC-HTN were manually added
for clarity, illustrating the implied logic behind the action grouping.

Fig. 2: The graph types used for constructing CC-HTNs, applied to part of a furniture assembly task from Figure 1.

originating from a vertex that is an initiation state of G and
terminating in a goal state of G.

We define the task structure as being knowable when the
learner’s task graph can be reduced to a subgraph containing
only the vertices and edges of successful (or in a planner’s
case, satisfying) task executions. Given each possible task
solution xi ∈ X , we define a task being iteratively learned
by the robot as the weakly connected directed multigraph
T =

⋃|X|
i=1 xi, describing a Markovian graph consisting of

all known valid task execution paths. This construction is
especially useful when using low-repetition, demonstration-
based training common to deployed robotics scenarios.

In entirely demonstration or observation driven scenarios,
our approach imposes the requirement of autonomous task
failure detection, which can be difficult in LfD-driven, real-
world scenarios. As a consequence of this, we qualify our
approach as ‘weakly supervised’ for that particular domain,
while remaining fully autonomous for more well specified
applications such as symbolic planning.

B. Task Encoding and Action Representation

For generality, we encode tasks with the traditional SMDP
representation {S,A,R, P}. Due to the lack of assumptions

regarding symbolic skill knowledge, we represent environ-
ment states as compositions of functions fan ◦ fan−1 ◦
... ◦ fa1

(x), where x is the initiation state at the time of
execution and fai

: S → S represents the effect that ai
has on the environment. This function composition serves
to map environment states satisfying preconditions of a1 to
environment states satisfying postconditions of an. Each of
these fai

is taken directly from the action sequence followed
by the agent through the state space to reach the current
state. We assume the capability to identify commutativity
between fai

, as these compositions will result in equivalent
final states.

C. Conjugate Task Graph

We desire a representation that reveals easily exploitable
relationships between skills to help discover logical group-
ings of actions to abstract into subtasks, free of execution
context. In providing this abstraction, we sacrifice optimality
in favor of tractability. Environment-centric representations
of Markovian graphs (such as SMDPs) do not readily convey
features facilitating the discovery of a task’s underlying
structure. To overcome this, we augment the task graph
via a transformation function (Algorithm 1) to produce a



Algorithm 1: Conjugate Task Graph Transform
Input: Markovian Graph G = {V,E}
Output: Conjugate Task Graph C

1 C ← empty Conjugate Task Graph {W,F};
2 origin vertex ← new empty vertex;
3 terminal vertex ← new empty vertex;
4 Add origin vertex and terminal vertex to W ;
5 foreach unique a ∈ {action(e)|∀e ∈ E} do
6 Add vertex {action = a} to W ;

7 foreach edge e ∈ E do
8 if from(e) ∈ initiation states(G) then
9 Add edges {from: origin vertex, to: [v ∈W |

action(v) = action(e)], prerequisites: ∅} to F ;

10 if to(e) ∈ termination states(G) then
11 Add edges {from: [v ∈W |

action(v) = action(e)], to: terminal vertex,
prerequisites: environment state(to(e))} to F ;

12 else
13 foreach edge f ∈ outbound edges(to(e)) do
14 Add edges {from: [vertex v ∈W |

action(v) = action(e)], to: [u ∈W |
action(u) = action(f)], prerequisites:
environment state(to(e))};

15 foreach {a, b ∈ F | a 6= b} do
16 if from(a) = from(b) and to(a) = to(b) and

prerequisites(a) ⊆ prerequisites(b) then delete b;

constraint network from its conjugate, resulting in a graphical
representation with parameterized actions encoded in vertices
as subgoals and environmental prerequisites encoded on its
edges as compositions of subgoal completions. We refer to
this graph as the Conjugate Task Graph (CTG) (Figure 2a).

To create a CTG, we follow the procedure described in
Algorithm 1. As input, we require a sequential manipulation
problem represented as a task graph (obtainable by teleopera-
tion, demonstration, or exploration), with options specified at
the level of subgoals. Adapting arbitrary primitive actions
to serve as subgoal specifications may involve utilizing a
HI-MAT hierarchy [25] or learning options that achieve the
‘bottleneck states’ discovered via a state space segmentation
algorithm like Q-Cut [26] to derive higher-level grounded
options. In the IKEA assembly domain, these options are
shown in Figure 2a.

Recall that the goal of this algorithm is to create a graph
where subgoals are represented as vertices and environmental
constraints are represented on edges.

In lines 8-11, the initiation and goal sets are transformed
into the new representation. For any task graph edge e orig-
inating at an initiation state, a corresponding edge is created
in the conjugate graph connecting the origin vertex to the
vertex labeled with the action represented in e. Similarly, for
any graph edge e terminating at a goal state, a corresponding
edge is made connecting the conjugate vertex with the same

Algorithm 2: Construct CC-HTN
Input: Conjugate-Task-Graph G
Output: CC-HTN H

1 H ← Copy(G)
2 while |Hvertices| > 1 do
3 h size← |Hvertices|
4 foreach maximal clique c = {V,E} ∈ H do
5 Compact {V ∈ c} into single metanode m

6 foreach maximal chain c = {V,E} ∈ H do
7 Compact {V ∈ c} into single metanode m

8 if h size == |Hvertices| then break;

action label to the graph’s terminal vertex.
In lines 13-14, the internal edges of the conjugate graph

are populated by looking at pairs of edges (e, f) that share a
common vertex in the original task graph. Edges are added
to the conjugate graph from the vertex matching the action
on e to the vertex matching the action on f . Finally, in lines
15-16 we remove redundant edges in the graph, contributing
towards the HTN only enabling plans with forward justified
steps [27].

D. CC-HTN Generation

In this section we introduce the Clique/Chain Hierar-
chical Task Network (CC-HTN), a novel HTN based on
subtask ordering constraints. Our method draws its utility
from the observation that the basis of a task network’s
structure is embedded in the restrictions placed on allowable
permutations of subgoal sequences during execution. These
restrictions can be characterized as independently applying
to subsequences of goals or motor primitives in the task’s
hierarchy, indicating ordering constraints on a subtask. Our
approach to hierarchy construction classifies subgraphs into
two fundamental types: unordered sequences (cliques) and
ordered sequences (chains).

Composing the CTG into collections of ordered and un-
ordered subsequences provides a mechanism by which a task
hierarchy can be derived solely from known transitions. To
finish the process of converting a task graph into a CC-
HTN (Algorithm 2), we perform a series of alternating,
contracting graph operations on the CTG. These operations
are performed until either the task is condensed into a single
vertex, indicating a successful and complete hierarchical
abstraction, or until the graph does not change as a result
of the actions, indicating that the graph is either incomplete
or cannot be condensed further. This process is visually rep-
resented in Figure 2b, with failure contingencies explained
in the following section.

A clique in a CTG has at least one set of inbound
edges such that one member edge terminates at each internal
vertex of the clique. These edges must all share a common
prerequisite list on their label. There must also exist a set
of edges originating within the clique, with origins at each
clique member, terminating at the same external node. These



Algorithm 3: Resolve Chain Ambiguity
Input: Conjugate Task Graph G = {V,E}
Output: Conjugate Task Graph H = {W,F} or ‘No

ambiguity’
1 CG ← all sets of commutative subgoals in G;
2 CE ← all edges between subgoals in CG;
3 W ← V ;
4 F ← E \ CE ;
5 new chains← [];
6 foreach maximal chain c = {X, I} ∈ H do
7 Compact {X, I} ∈ c into single chain metanode m;
8 new chains.append(m)

9 if |new chains| == 0 then return ‘No ambiguity’;
10 foreach Edge e ∈ CE do
11 if to(e) is the head of a chain c ∈ new chains then
12 e.prerequisites.append( Members of c not in

e.prerequisites);
13 F = F

⋃
e;

14 Remove redundant edges from F ;

edges share the requirement that each edge’s label must
minimally match the postcondition set resulting from the
execution of all skills represented within the clique. Due
to the construction of the graph, it can be inferred that the
environment-modifying functions of skills within a clique
are commutative with respect to successful task completion.
This can be seen in the “Add Pegs” node (Figure 2b), as the
order doesn’t matter when placing the left and right peg.

A chain is defined as a path of vertices fulfilling special
connection criteria. A chain has a starting vertex with out-
degree one and a termination vertex with in-degree one. All
intermediate members of a chain must be on a path between
the starting and ending vertex, with an in-degree and out-
degree of one. This occurs in the “Mount” node (Figure 2b),
as getting then placing the frame must occur in sequence.

By iteratively finding and replacing maximal chains and
maximal cliques in the CTG with meta-vertices until either
a single vertex remains or the graph remains unchanged, a
hierarchical structure emerges from known (or hypothesized)
graph transitions (Figure 2b). Hierarchies generated by this
method have the benefit of being human interpretable (given
sensibly named motor primitives).

E. Hierarchical Ambiguity

Three conditions exist in which a task does not cleanly
abstract into a hierarchical structure with a single root node.

1) Redundancy or Equivalence: A maximally abstracted
hierarchy cannot be guaranteed with our algorithm if actions
tangential to the goal of the task are included. Any unnec-
essary actions must be identified and removed from the task
graph. Similarly, if two or more skills perform equivalent
functions from a goal fulfillment perspective, they must be
classified as instantiations of the same skill (e.g., pressing a
button with the top or side of a manipulator).

Algorithm 4: Resolve Clique Ambiguity
Input: Conjugate Task Graph G = {V,E},
Edge set Z = {Known subgoal transitions}
Output: Conjugate Task Graph H = {W,F} or ‘No

ambiguity’
1 H ← Copy(G);
2 J = {X, I} ← Resolve-Chain-Ambiguity(G);
3 C ← {set of chains in J} \ {set of chains in G};
4 Q← Map {v: {subgoals commutative with v ∈W}};
5 foreach Chain c ∈ C do
6 foreach Edge e ∈ Chain c do
7 if (to(e) ∈ c and from(e) ∈ c) then

F ← F \ e;
8 prerequisites(e)← prerequisites(e) ∪

Q[from(e)];
9 if (modified e /∈ Z) then return ‘No ambiguity’;

10 F ← F
⋃
{modified e};

11 new cliques← [];
12 foreach maximal clique q = {X, I} ∈ H do
13 Compact {X ∈ q} into single metanode m;
14 new chains.append(m);

15 if |new cliques| == 0 then return ‘No ambiguity’;

2) Incomplete Graph: If the task graph does not fully
identify its transition dynamics, only a partial hierarchy
can be provided. Autonomous exploration or active learning
can be used to discover these ordering constraints [28].
Algorithms 1 and 2 can be applied online, providing more
structure as new demonstrations are observed and the task
graph’s topology is discovered.

3) Multiple Valid Alternatives: Many subtasks have mul-
tiple valid constraint-based hierarchical representations. One
such example is the task of placing two glasses on a table
then filling them. If the possible actions were {Place Glass 1,
Place Glass 2, Fill Glass 1, Fill Glass 2}, it is equally plausi-
ble that this can be abstracted to {Place Glasses, Fill Glasses}
or {Place/Fill Glass 1, Place/Fill Glass 2}. These situations
present themselves as vertices in the CTG that are both part
of cliques and chains at the same level of abstraction. In
practice, both hierarchies should be kept at each possible
fork, with the final hierarchy decided by predicted execution
policy reward (given the available agents, resources, etc.).
In the event that Algorithm 2 does not converge to a single
vertex, Algorithms 3 and 4 can be run afterwards to extract
these alternative hierarchical representations if they exist.

F. Algorithm Runtime Analysis

The dominating complexity factor throughout these algo-
rithms is the maximal clique detection within the Conjugate-
Task-Graph to HTN Transform (Algorithm 2) and clique
ambiguity resolution (Algorithm 4), an NP-hard problem.
This step can be accomplished in time O(d|V |3d/3) using
the Bron-Kerbosch algorithm [29], where d is the degeneracy
of the graph and |V | is the number of graph vertices,



(a) Mean computation times for estimating an agent’s last completed
subgoal using HMMs, as a function of task complexity. Timings
were measured using a single thread of an Intel i7-3930K CPU. The
responsiveness required in collaborative task execution mandates
high frequency state estimation capabilities. In most cases, the CC-
HTN model completed its computation faster than 1Hz.

(b) Average number of edges in generated sequential manipulation
tasks as a function of subgoal count. The CC-HTN encapsulates
much of the transition complexity in the task, causing a dramatic
reduction in the amount of edges required to represent task sub-
structure. This simplification of task dynamics allows for more rapid
computations in role selection and intention recognition.

Fig. 3: Performance metrics evaluating our hierarchical approach in a task state estimation problem.

on a simplified (undirected) CTG to find maximal clique
candidates. These candidates are then kept or eliminated
based upon verification that edge prerequisite conditions are
met in the original CTG. The process of finding chains is
linear in the number of vertices within the graph, while the
conjugate graph transform (Algorithm 1) and chain ambigu-
ity resolution (Algorithm 3) run in time that is polynomial
in the number of observed vertices, edges, and task actions.

In practice, a large number of conjugate task graphs in the
sequential manipulation domain will have low degeneracy
(indicating a majority of subtasks being ordered) compared
to the number of vertices within them (total number of
subgoals), which drives down the cost of clique detection.

IV. APPLICATIONS AND EVALUATION

Two important applications of CC-HTNs are in goal
inference and task planning. The challenge of interpreting
another’s actions to derive potential goals is critically impor-
tant within human-robot collaboration. Intention recognition
enables an agent to vastly expand its planning horizons and
narrow its belief space about its teammates.

An agent that can rapidly re-plan task solutions to accom-
modate and work around the actions of its collaborators is far
more valuable than one who cannot. As such, we conclude
with an analysis of the CC-HTN’s ability to accelerate task
planning solutions by leveraging abstractions from prior ex-
periences. This performance boost is obtained by employing
a simple transfer of knowledge across tasks: internal nodes of
CC-HTNs (each representing multiple motor primitives) are
added to the agent’s action dictionary, allowing for a planner
to use larger building blocks in its search.

A. State Estimation

To showcase the effectiveness of the autonomously con-
structed CC-HTNs, we demonstrate their performance first
within an online goal estimation task. In human-robot col-
laboration, there will always exist one or more agents that

cannot be controlled by a central planner and cannot be
assumed to regularly report their status explicitly. Thus, it
is imperative that agents be able to infer each other’s goals
(e.g., “Agent 1 wants to attach the seat of the chair”).

To perform this goal inference, we create hierarchical
Hidden Markov Models that we assemble from CC-HTNs
(created by Algorithm 2). As (hierarchical) HMMs have been
shown to be a popular and effective approach for action
and goal recognition [4], [30], we test the effectiveness
of our hierarchies at segmenting tasks within this domain.
HMM states represent task subgoals, while state transition
probabilities are uniformly distributed across valid transitions
within the HTN to create a naı̈ve initial policy prior. We
use Semantic Event Chains [31] to define the observation
sets for each action within the HTN, with a naı̈ve Bayes
assumption of observation independence. Semantic Event
Chains model actions as sequences of object-object and
agent-object contact/non-contact events, thus the observation
sets at each state in the HMM are these contact events.
Combining this action representation with an HMM provides
a probabilistic model for predicting the goals of an observed
agent. The Semantic Event Chain action representation is
conveniently independent from agent kinematics, and can be
used for predicting both human and robot intent.

1) Task Definition: The tasks used in this evaluation were
generated using encoded IKEA furniture assembly tasks,
a domain previously explored in multi-agent collaborative
scenarios [32], as a statistical basis for the task structure.
These tasks had subtask commutativity/invariance, per-skill
observation set overlap, and action set sizes sampled from
distributions modeled after real assembly tasks. These sce-
narios serve as a convenient method of providing arbitrarily
complex tasks within which to demonstrate the scaling
capabilities of our work. Our dataset included 76 tasks,
each with 4 randomly determined execution paths. These
tasks ranged in size from 10 to 100 subgoals, consisting



of parameterized pick, place, and fasten actions. Within the
CC-HTNs, the average depth for a motor primitive ranged
from 1.99 to 3.61, with a mean across all tasks of 2.84.

2) Results: We compare the state estimation performance
of CC-HTN-based hierarchical HMMs against traditional
HMMs built from the same task. This provides a measure
of utility for our generated hierarchies, namely how well it
segments and abstracts the problem space. We evaluated per-
formance across two measures: state estimation computation
time and graph size.

Collaborative task execution imposes strong real-time
computation constraints. Hierarchical structures mitigate the
growth of computational time requirements with task size. If
the generated hierarchies were mostly flat or did not segment
the task well, we would expect the hierarchical HMM and
flat HMM performance curves to be similar. As our com-
putational performance results show (Figure 3a), CC-HTNs
provide considerable computational benefits over flat task
models despite being built from the same base representation.
These outcomes strongly imply a useful abstractions were
created. In practice, hierarchical state estimation accuracy
benefits will be dependent on observation set overlap be-
tween subtasks, however for cases where there is suitable
distinction, these observed computational benefits apply.

We also evaluate the representation of the hierarchical
representation against that of the flat task graph (Figure 3b).
The primary comptuational advantage of our approach is
derived from the simplified structure afforded by encoding
child ordering constraints within parent vertices. In partic-
ular for clique substructures, this reduces the number of
edges required to represent subgoal relationships from being
polynomial in the number of involved subgoals ( |E| =
|V |2 − |V | ) to linear (|E| = |V |). For each incoming and
outgoing clique transition, edge count is reduced from linear
in the number of clique members (|E| = |V |) to constant
(|E| = 1).

Having a hierarchical task representation allows for state
estimation at multiple resolutions. In the case of assembling
an IKEA chair, a predicted internal node of the hierarchical
structure may represent the goal of “attach rear left leg to
chair”, encompassing all of its child primitives, providing
broader context than merely identifying an agent attempting
to “get wooden peg”. Being able to identify higher level
goals provides essential context when providing assistance
or planning one’s own actions. In many cases it is more
important to recognize these abstract goals than the motor
primitives themselves.

B. Task Planning and Transfer Learning

In addition to state estimation and intention prediction, the
presented approach has utility within task planning, allowing
an agent to leverage prior experiences (as macro actions) to
learn more quickly in new contexts.

The ability to plan with high level actions acquired through
normal operation is tremendously valuable for a collaborative
robot. These meta-actions allow a task planner to take larger
steps towards a goal state, acting as a valuable heuristic that

Fig. 4: Task MDP discovery results on a dataset of 25 food
preparation tasks with a primitive action set size of 39. Q-
function transfer aggregates Q-functions from known task
MDPs to bias action selection during exploration. CC-HTN
Transfer uses Q-function transfer with macro actions learned
from the CC-HTNs of other tasks in the data set.

removes multiple levels of depth from the plan search each
time one is utilized. Additionally, for applications where a
human user is assisting the task planner by specifying action
sequences manually, our abstractions can greatly reduce the
effort and time required to formulate a solution. As our
abstractions readily indicate intra-task dependencies and can
identify parallel subtasks through comparisons of required
resources at each subgoal, we also obtain benefits seen in
AND/OR graph constructions for assembly tasks [22].

More generally, given a task with an action set of size |A|
and an optimal solution length of d, a standard breadth-first
search will have complexity O(|A|d). With an abstraction
strategy that adds useful actions and follows the Downward
Refinement Property [27], the average search complexity
will improve exponentially with the layers of abstraction
provided. Given k levels of abstraction, the average com-
plexity reduces to O([k|A|]d/k). The addition of modern
heuristics (such as FFRob [33]) can be expected to provide
additional improvement. Thus, given the ability to determine
topically similar tasks, the burdens incurred by increasing
the size of the action dictionary are more than compensated
for by reducing the necessary search depth. This strategy
is particularly effective for robots designed to perform tasks
that originate from the same domain (such as a cooking robot
or a particular type of product assembly machine), but will
decrease in effectiveness as the task corpus diverges.

We conclude with results comparing three approaches to
a task exploration problem to quantify our contribution’s
transfer learning benefits for real tasks (Figure 4). Using a
data set of 25 food preparation tasks of between 6 and 14
steps encoded as SMDPs (|A| = 39), we measure the number
of iterations required for an ε-greedy exploration policy
to capture all structural insight (valid subgoal orderings)
of a task. The macro actions produced by our algorithm
achieved full task comprehension faster than either random
exploration or flat Q-function transfer strategies in every
trial. This indicates that autonomously built CC-HTNs are
more effective than the implicit subsequence clustering of



Q-function transfer, demonstrating deeper structural insight.

V. CONCLUSION

In this work we introduced CC-HTNs, and provided a
novel, bottom-up approach for autonomously deriving hier-
archical task structure from graphical task representations,
using SMDPs as a representative example. In doing so, we
introduce the Conjugate Task Graph: a task representation
with graphical properties that facilitate the identification of
underlying structure. The approach we present is widely
applicable, depending only upon the availability of primitive
skill classification and ordering constraint knowledge within
the target task. To make our contribution even further acces-
sible, we identify and provide solutions to instances where
ambiguity may arise in building the CC-HTN.

We evaluate our work in domains deeply relevant to
human-robot teaming: collaborator goal inference via state
estimation and task learning. Our results suggest that CC-
HTNs are useful in segmenting complex tasks, reducing
computation time and enabling inference at multiple levels
of abstraction. Our macro actions find further utility in
transfer learning settings, accelerating the comprehension of
new tasks and enhancing the value of prior training data.
Finally, our results demonstrate that CC-HTNs can reduce
the average search complexity for agents that operate in use
cases where task subgoals may be shared across activities.
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