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Abstract—Nonverbal behaviors increase task efficiency and
improve collaboration between people and robots. In this paper,
we introduce a model for generating nonverbal behavior and
investigate whether the usefulness of nonverbal behaviors changes
based on task difficulty. First, we detail a robot behavior model
that accounts for top-down and bottom-up features of the scene
when deciding when and how to perform deictic references
(looking or pointing). Then, we analyze how a robot’s deictic
nonverbal behavior affects people’s performance on a memo-
rization task under differing difficulty levels. We manipulate
difficulty in two ways: by adding steps to memorize, and by
introducing an interruption. We find that when the task is easy,
the robot’s nonverbal behavior has little influence over recall
and task completion. However, when the task is challenging—
because the memorization load is high or because the task is
interrupted—a robot’s nonverbal behaviors mitigate the negative
effects of these challenges, leading to higher recall accuracy and
lower completion times. In short, nonverbal behavior may be even
more valuable for difficult collaborations than for easy ones.

I. INTRODUCTION

People use nonverbal behaviors (NVBs) to augment spoken
references, clarify ambiguous language, and convey attention,
among many other functions [1], [2], [3]. Joint activity, which
involves coordinating action among two partners, requires
NVBs that direct attention to particular objects or regions of
space [4]. These actions can take the form of pointing (i.e.,
deictic) gestures, which can be enacted with the hand, the
head, or other body parts [2], [3], [4]. In this paper, we focus
on two specific deictic NVBs: pointing with the hand and
looking with the head.

Robots can take advantage of deictic NVBs to improve
human-robot collaborations. For example, imagine a robot
assistant on a factory floor that is training an employee to
construct an assembly out of component parts. The robot can
look and point to the parts as it refers to them in order to
clarify the references. This is especially important when there
are multiple parts that can be described the same way, but
need to be placed in a particular order, for example, a left and
right version of the same bracket piece. Instead of saying “the
left bracket piece,” the robot can say “that bracket piece” and
use pointing to disambiguate the reference to “bracket piece.”

Human-robot interaction research has shown that people can
benefit from this kind of deictic NVB from robots. Pointing
and gaze from robots during object references allows people

Fig. 1. This paper investigates how deictic nonverbal behavior from a robot
mediates a task’s difficulty in terms of information recall and time to task
completion in a human-robot collaboration.

to more quickly locate objects and to disambiguate object
references, increasing the efficiency of the collaborations [5],
[6], [7]. People also have more positive evaluations of a robot
when it uses gestures along with speech [8].

In this paper, we present a computational model for gener-
ating robot NVBs, and then use a real-time implementation of
this model in a human-robot interaction study (Figure 1). We
show that our model generates helpful NVBs that improve
people’s understanding of a robot’s communication, and we
reveal new insights into the use of NVB in collaborative HRI.

Generating NVBs for robots is not trivial. A naı̈ve NVB
controller might always select all possible nonverbal behav-
iors, looking and pointing at every possible reference. But
there is a benefit to being selective about generating NVBs.
Frequent nonverbal behavior is undesirable when it engages
effectors that the robot might otherwise need, such as hands
for object manipulation and head for vision. Additionally, in
human collaborations, people use nonverbal behaviors as sub-
tle, implicit mechanisms of communication [9], so excessive
NVBs may be visually or cognitively distracting to a viewer.
For robots powered by batteries, energy expenditure from
moving effectors to perform NVBs might also be a concern.

For these reasons, our behavior model is selective about
when to generate NVBs. The model considers elements of the
scene and the task to select the most communicative and least
expensive NVBs for the particular reference and environment



at hand. This model is described in Section III.
Next, we use our novel model to generate deictic NVBs for

a human-robot collaboration that investigates the effectiveness
of NVBs under different task difficulties. In particular, we
explore whether the difficulty of a task affects how well a
robot’s deictic NVBs serve to communicate spatial references.
To answer this research question, people are asked to complete
a memorization task based on instructions provided by a
humanoid robot. We manipulate task difficulty in two ways:
by increasing the number of steps people need to memorize,
and by introducing an interruption that distracts people mo-
mentarily from their task. We hypothesize that:

H1 Using nonverbal behaviors while providing spatial
task instructions will improve recall accuracy and
reduce task completion times,

H2 When the task difficulty increases, the effect of
nonverbal behaviors will increase, and

H3 A robot that displays nonverbal behaviors will be
rated more positively than a robot that only uses
speech for communication.

Spatial collaboration, like the task employed in this study,
involves manipulating and moving objects in the environment.
Because the position of these objects is not restricted, the
model cannot simply pre-script the NVBs for each object.
Instead, our real-time robot behavior model continually cal-
culates the best NVB for each object reference as the objects
in the environment are manipulated.

Section IV details the implementation of the model and the
experiment. Section V describes the results of the study, and
Section VI discusses these results and future research.

II. RELATED WORK

People use deictic gestures like pointing to focus attention
on a target spatial region [10]. As pointing becomes more
precise (because the pointing targets are closer), people rely
more on pointing and less on language for references [10].
Deictic gestures are especially useful in communicating how
to assemble objects [11], which is the task we have selected
for the present study.

Human-robot interaction (HRI) research has shown the
benefit of deictic gestures in human-robot collaboration. Im-
plicit nonverbal communication increases the efficiency of
task performance and reduces the impact of errors from mis-
communication [12]. When robots are providing instructions
or referencing objects, people use robots’ deictic gestures to
improve their task speed and efficiency [5], [6], [7]. Robots can
even use deictic gaze to subtly influence people’s selections
of objects without those people realizing it [13]. Robots that
gesture along with their speech elicit more attention and better
recall [14], as well as higher ratings [8], than robots that do
not show co-verbal gestures. Cooperative gestures are most
effective when they are presented frontally and with machine-
like “abrupt” motion [15]. Multiple deictic gestures may be
better than individual gestures [16].

Computational models of NVB allow robots to generate
their own gaze and gestures in response to the context of

the interaction. Some of these models are based on empirical
examples for human performance, such as data-driven models
of tutoring [17] and narration [18]. Others are based on
contextual and semantic knowledge [19].

In this paper, we use an NVB model that accounts for a
user’s perspective to select the correct deictic behavior for
object references. Some robot behavior generators also model
the user’s perspective to select deictic behaviors for providing
route directions [20] or references to people nearby [21]. A
robot that simulates human cognition when selecting deictic
behaviors can more effectively convey the region of space to
which it refers [22]. Our model is different from prior work
because it applies to object references, not to people or spatial
areas, and because it uses both top-down and bottom-up cues
from the scene to model the user’s perspective.

Our robot behavior model is inspired by psychology’s
understanding of how people direct visual attention. Visual at-
tention involves both bottom-up mechanisms to isolate objects
of interest from their background, and top-down mechanisms
to select task-relevant objects [23]. Both top-down and bottom-
up attentional processes are important components of fluid
joint action between people and robots [24].

Bottom-up processing involves visual features like color,
orientation, and shape, which can be combined into a saliency
map indicating the conspicuity of objects in the visual scene
[25]. The effect of bottom-up features is mitigated by top-
down contextual cues like scene understanding and object
recognition that influence where visual attention is directed
[26]. Gaze and pointing are top-down cues, serving to draw
attention to a particular visual region [10]. However, gaze
and pointing only refer to approximate spatial zones rather
than to precise linear vectors [27]. Therefore, these nonverbal
behaviors can be seen as directing a cone of attention out
toward the scene, rather than a single line, a construct we
employ in our robot behavior model.

III. ROBOT BEHAVIOR MODEL

In this study, our robot uses a real-time behavior model
[28] to generate appropriate, task-relevant looking and pointing
behaviors. This model accounts for elements of the scene—
such as the visual configuration of objects from the partici-
pant’s perspective—and contextual information about the task
to select when to gaze or point at objects in the environment.

The model uses both bottom-up and top-down information
to decide when to produce nonverbal spatial references. To
do so, it considers all possible objects that might be referred
to, and calculates a referential likelihood score for each of
them. This score represents how much the model expects that
the user will see that particular object as the target of the
robot’s reference, given the features of the scene, context of
the interaction, and the robot’s nonverbal behaviors.

To select the best nonverbal behavior for an object reference,
the model simulates referential likelihood scores for all possi-
ble verbal and nonverbal behaviors toward the target object. It
selects the behavior that maximizes the user’s attention toward
the target while minimizing the cost of that action.
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Fig. 2. The behavior model accounts for features of the scene, context of the
task, and the robot’s capabilities, and outputs a set of verbal and nonverbal
behaviors that maximizes user attention to the target object while minimizing
behavior cost.

In this section, we provide a mathematical definition of the
referential behavior model (Figure 2). In general, the model
takes a set of inputs I = (O, ⌧, B, C,↵) and outputs a single
behavior �,

⌅ : I ! � (1)

The set of objects O = {o1, . . . , on} represents all possible
objects that can be referred to. In this experiment, O is the
set of objects (blocks and bins) on the table. Of these, o⌧
represents the target object.

In this implementation, the robot’s behavioral repertoire
B = {�1, . . . ,�k} contains three actions: speaking, looking,
and pointing. Speaking uses the robot’s text-to-speech gener-
ator. Looking is enacted by having the robot orient the center
of its face toward the target location. For a robot that has fixed
eyes—like the one used in this study—head orientation must
take the place of true gaze, which involves both head and eye
movement. Pointing involves the robot reaching its arm so that
a ray extending from its shoulder joint to wrist joint intersects
with the center of the target. The robot uses whichever arm is
closer to the object to point.
C is a ranking of behaviors by relative cost. In this ex-

periment, relative cost is determined by energy expenditure,
with speaking as lowest cost, followed by looking, followed
by pointing.

The value ↵ represents a disambiguation level for a refer-
ence. It specifies how distinctly the referential behavior should
indicate the target object, compared to other objects in the
scene. A lower ↵ means that that the nonverbal behaviors do
not distinguish the target quite as completely from competing
objects. In this study, ↵ = 2.0 based on pilot testing.

The model uses a composition of two functions to generate
behaviors,

⌅ : I
A�! (⌃, C,↵)

S�! � (2)

A. Attention Estimation (A)
The first function, A, performs attention estimation. It

estimates how much the user’s attention is expected to be
drawn to each object in the scene. This function,

A : (O, ⌧, B) ! ⌃ (3)

Fig. 3. The NVB model accounts for bottom-up saliency of objects in the
scene from the user’s perspective. The left image is a participant’s view of
blocks and table. The right image is a saliency map generated from this view.

takes the set of objects, target object, and robot behaviors,
and calculates referential likelihood scores for each object.
The set of all referential likelihood scores under all behaviors
is ⌃. The score for each object under a particular behavior
j is ⌃j = {�1,j , . . . ,�n,j}. For example, if behavior �1 is
“pointing,” the values in ⌃1 indicate likelihood scores for each
object in the scene when the robot is pointing at the target
object.

The model takes four cues into account when calculating
referential likelihood scores. It considers the visual saliency of
a scene based on low-level features like color, intensity, and
orientation. It identifies top-down verbal context based on the
descriptive words for each object compared to the words being
spoken in the reference. It also recognizes gaze and pointing
behaviors that further disambiguate object references.

The linear combination of these cues gives the likelihood
score

�i,j = !sSi + !vVi + !gGi,j + !pPi,j (4)

The likelihood score �i,j of an object o 2 O under be-
havior �j 2 B depends on the weighted sum of the visual
saliency Si, the verbal context Vi, the gaze behavior Gi,j ,
and the pointing behavior Pi,j . We use the following weights
in our experiment, empirically determined via pilot study:
!s = 0.25,!v = 0.57,!g = 0.91,!p = 1.64.

1) Saliency: Saliency identifies areas that draw visual at-
tention. It depends on bottom-up features such as color and
orientation. In this work, we capture the point of view of the
scene from the user’s perspective using a camera mounted
above the table. We then calculate a saliency map from
that image using the Ensembles of Deep Networks (eDN)
algorithm [29] (Figure 3). An object’s saliency score Si is
calculated as the sum of the above-average pixels in the region
of the saliency map representing that object.

2) Verbal Context: Verbal context calculates the proportion
of the features in a referential utterance that match descriptor
words for an object. The robot’s behavior can include utter-
ances u of descriptive words such as “small” and “red.” Each
object oi also has a set of descriptor words Di 2 D that apply
to it. We calculate the verbal context score as

Vi,j =
X

w2u

in(w,Di)

|D| , in(w,Di) =

(
1, if w 2 Di

0, otherwise.
(5)

The value of Vi,j ranges from [0, 1], where Vi,j = 1 indicates
that all of the words in the utterance describe the object.



3) and 4) Gaze and Pointing: Deictic behaviors (gazing
and pointing) are conceptualized as a cone of attention that
is centered on a target. The cone is comprised of a set of
rays beginning at origin h of the behavior (head or hand).
Rays extend in the direction of the behavior with some pitch
� and yaw ✓ off the center ray, which is focused on the
target object. The extent of � and ✓ were determined visually
during piloting: pointing rays extend 5� from center in all
directions to represent the robot’s apparent field of pointing,
and gaze rays extend 15� degrees from center in all directions
to represent the robot’s useful field of view. If a ray intersects
an object, that object’s score increases by some base amount.
An attenuation function modulates the base score for each ray,
with rays closer to the center providing a greater impact on
gaze or point scores than rays toward the edge of the cone.

Mathematically, the gaze score is calculated as

Gi,j =

Z

✓

Z

�

aG(✓,�) · I(h, ✓,�, oi)�1 · rG d� d✓ (6)

where aG is the attenuation function, I indicates the distance
between ray origin h and intersection with object oi (1 if no
intersection), and rG is the base score for a gaze ray. The point
score Pi,j is computed similarly to Equation 6 but with an
attenuation function aP and base score rP specific to pointing.

The attenuation function determines the impact of the ray on
the overall score. Because eye gaze is the less precise deictic
behavior, we design that attenuation function (Equation 7) to
yield a larger but less focused cone of attention than pointing
(Equation 8). The gaze attenuation function

aG(✓,�) = (1 + ✓2 + �2)�1 (7)

indicates that gaze diminishes at a rate inversely proportional
to the squared distance of the ray’s angular deviation, while
the pointing attenuation function

aP (✓,�) = (1 + e
p

✓2+�2
)�1 · 2 (8)

indicates that pointing is more concentrated near the center,
dropping off exponentially with angular distance.

B. Behavior Selection (S)
The model uses the likelihood scores ⌃ to select the be-

havior that maximizes the likelihood of the target object while
minimizing behavior cost. Because likelihood scores represent
the relative likelihood that one object is being referenced
compared to another, what matters is the relative likelihood
score of the target object compared to the other objects in
the scene. We calculate a score bj that represents how many
standard deviations above the mean the likelihood score of the
target object, �⌧,j , is under each behavior �j ,

bj =
�⌧,j � �̄jvuut
nP

i=0

(�i,j��̄j)2

n�1

(9)

For a behavior to be selected, the value of bj must be above
the empirically-determined disambiguation threshold ↵. The

Put one of the small red blocks on top of the large lime block. 

Put the small green block next to the red block.

Then stack a small blue block on the red block.

Put that arrangement in the bin on your right.

1

2

3

4

Fig. 4. An example of steps for an assembly in the high memorization
condition. Assemblies in the high memorization condition all have four steps.
Low memorization assemblies have three steps, and are generated by removing
the third step of a corresponding high memorization assembly.

system selects the behavior with the smallest cost c�j 2 C
subject to the constraint bj > ↵.

IV. EXPERIMENT

To evaluate the effect of nonverbal behavior on people’s
performance during interrupted tasks, we conducted an in-
person human-robot interaction study. In this study, we test
people’s memory for a set of assembly instructions given
by a robot. For some participants, the robot uses NVBs
to augment its spoken instructions. We compare people’s
performance with or without NVBs and at various levels of
task difficulty to evaluate how NVBs affect instruction recall
and task efficiency.

A. Design
1) Experimental variables: This study has three between-

subjects independent variables.
• NVB is “present” or “absent” depending on whether or not

the robot displays nonverbal behaviors when providing
the assembly instructions

• Memorization load is “low” or “high” depending on the
number of steps in the assembly to be memorized

• Interruption is “present” or “absent” depending on
whether or not the user is interrupted during their com-
pletion of the task

Therefore, this study has a 2 (NVB) ⇥ 2 (memorization)
⇥ 2 (interruption) design, which results in eight conditions.
Participants are randomly assigned to one of these conditions.

The nonverbal behaviors in the NVB condition are looking
and pointing. These behaviors are autonomously generated in
real time in response to object references using the model
described in Section III. Details of the model implementation
for this experiment are in Section IV-B.

We employ two strategies for changing the difficulty of the
task. The first is an increase in memorization load. Each task
in this study requires memorizing two assemblies at a time
(Figure 4). Low memorization assemblies involve three steps
for completion, and high memorization assemblies require
four steps. In both cases, the final assembly step is always
an instruction to place the assembly in a particular bin. The
other assembly steps involve a subject, a spatial relation, and
a target. For example, “put the small green block next to the
red block” involves the green block (subject), next to (spatial
relation), and red block (target).

The second strategy for changing task difficulty is inter-
ruption. In this study, an interruption involves completing a



Fig. 5. An example of a mental rotation question used in the interruption.
The correct answer is B. Courtesy of [30].

mental rotation test [30] (Figure 5). In the test, participants are
shown pictures of a target shape and four possible rotations of
that shape. They are asked to select the image that correctly
represents what the target shape would look like when rotated.
Participants who are interrupted complete eight such questions
with a time limit of four minutes. We selected a mental rotation
test as an interruption to try to interfere with people’s spatial
and visual memory for the assembly instructions.

The two difficulty manipulations provide different types of
challenges. Increasing memorization load puts greater strain
on working memory. The number of steps to be memorized in
each task goes from six in the low memorization condition to
eight in the high memorization condition, approaching the 7±2
limit to working memory [31]. The interruption, in contrast,
presents an unexpected and rapid shift of attention. It was
selected to mimic a distraction that might occur during any
type of human-robot collaboration.

2) Measures: There are two objective measures and one
subjective measure in this study. The first objective measure
is recall accuracy, how well a participant follows a robot’s
instructions as measured by the number of correct steps the
participant completes in each assembly. Each step is scored
individually for accuracy, so participants can receive partial
credit for an assembly even if some of the steps are completed
incorrectly.

The second objective measure is the completion time, how
long it takes the participant to put the blocks together once they
are given the instructions. Completion time is measured from
the moment the robot finishes its instructions to the moment
the participant indicates that they are done with the task (see
Section IV-C for details). Lower completion times mean more
efficient interactions.

The subjective measure is people’s perceptions of the robot’s
animacy, anthropomorphism, intelligence, and likability, using
the Godspeed survey [32]. This standardized human-robot
interaction questionnaire has five or six Likert-scale questions
for each of the four perception items we are studying.

B. Apparatus
The robot in this study is a 58 centimeter tall humanoid

called Nao. We used two degrees of freedom in Nao’s head to
enact looking behaviors and six degrees of freedom in Nao’s
arms for pointing behaviors. Nao’s speech was generated using
the robot’s built-in text-to-speech system.

Participants constructed different assemblies using eight
brightly colored Mega Blocks. A Microsoft Kinect v2 sensor
provided real-time sensing capabilities for the Nao, enabling it
to detect the blocks in real time and to track their positions in

Interruption

Task 1 Task 2

Robot gives 
instructions

Participant builds 
assemblies

Participant !
resets blocks

Participant  
completes 

survey

Participant builds 
assemblies

Robot gives 
instructions

Fig. 6. A timeline of the interaction. If the participant was in the interruption
condition, an interruption occurred between the robot’s instructions and the
participant’s assembly in task 2.

3D space. Each block had a fiducial marker attached, so that
the Kinect could uniquely identify blocks using the augmented
reality library ArUco [33]. The markers were attached along
each block’s edge, so the center of a marker did not represent
the center of a block. To ensure that the Nao’s deixis would be
correctly aimed at the center of the blocks, the Kinect found
block centers using color segmentation and blob detection
techniques from the OpenCV library [34], matching the marker
closest to a given block center as that block’s identifier.

Because object detection and nonverbal behavior modeling
occurred in real time, the NVBs in this study were not pre-
scripted. The NVBs a particular participant saw depended on
the block layout. Though all participants began with the same
block layout, after they manipulated the blocks, the NVB to
each block was re-calculated based on its new position.

In every condition, Nao shifted its weight slightly from
foot to foot to simulate animacy when it was not providing
task instructions. When performing computationally expensive
actions like calculating saliency scores for each object, which
required several seconds at the start of each trial, Nao scanned
left and right with its head to simulate looking at all of the
objects on the table.

C. Methods

We collected data from 48 participants recruited from the
Yale University campus (mean age 26; 25 male, 21 female, 2
other or preferred not to respond). Participants were compen-
sated $5 for this 30 minute study. Participants were randomly
assigned to an NVB, memorization, and interruption condition.

Figure 6 provides a visual timeline of the interaction.
Participants performed two construction tasks, one after the
other. Each task was comprised of two assemblies. For each
assembly, Nao provided a set of pre-scripted verbal instruc-
tions (Figure 4). For participants in the NVB condition, these
verbal instructions were augmented with simultaneous looking
and pointing behaviors generated by the model described in
Section III. All participants heard the same instructions; NVB
and no-NVB trials were identical except that in NVB trials,
the robot performed gazes and gestures which simply repeated
what was already being conveyed verbally.

There was a timer on the computer screen next to the
participant. After Nao was done giving its instructions for the
task, it told participants to press “start” on the timer and begin



Low Difficulty High Difficulty

No Interruption Interruption No Interruption Interruption
No
NVB 0.976 (.04) 0.943 (.06) 0.675 (.21) 0.867 (.12)

NVB 0.929 (.11) 0.893 (.13) 0.917 (.05) 0.843 (.18)

TABLE I
AVERAGE RECALL ACCURACY ON TASK 2 FOR EACH OF THE EIGHT

CONDITIONS, WRITTEN AS MEAN (STANDARD DEVIATION).

putting together the blocks, and to press “stop” when they were
finished. Task completion time is measured from when the
robot finishes its instructions to when the participant pressed
“stop” on the timer, in order to account for time they spent
thinking before pressing the “start” button.

As illustrated in Figure 6, Nao gave a complete set of in-
structions first; only after instructions ended were participants
allowed to begin construction. Instructions took on average
23 seconds for low and 30 seconds for high memory tasks.
Nao did not have to synchronize its behaviors to moving
blocks, since blocks were always stationary (i.e., not being
manipulated) during the instructions.

For participants in the interruption condition, an interruption
occurred just after Nao finished providing instructions to task
2 but before participants could start assembling the blocks.
During the interruption, the experimenter came into the room,
placed the robot in an idling mode by tapping its head once,
and asked the participant to complete a mental rotation test
(detailed in Section IV-A1). The test itself had a four minute
time limit, and the total interruption time was approximately
five minutes, though it varied based on how quickly the
participant completed the test. After the interruption, the robot
was taken out of idling mode with a second head tap. It then
prompted participants to begin the task 2 assembly.

Though we did not inform participants, task 1 is a practice
trial that allows people to familiarize themselves with the task
and the robot. Results from task 2 are analyzed in Section V.

At the end of the experiment, participants were asked to
complete a questionnaire detailing their impressions of the
robot and the task. They also provided demographic infor-
mation at this time.

V. RESULTS

Two participants were excluded for noncompliance, so we
examined data from 46 participants.

A. Objective Measures
To evaluate the behavioral effects of our manipulations, we

examine the effect of the three experimental variables (mem-
orization load, interruption, and NVB) on the two behavioral
metrics (accuracy and completion time, both measured from
the second task). Results are shown in Table I for accuracy
and Table II for time.

We conducted a three-way analysis of variance (ANOVA)
to measure the effects of our three independent variables on
recall accuracy. The test revealed a statistically significant

Low Difficulty High Difficulty

No Interruption Interruption No Interruption Interruption
No
NVB 12.5 (2.6) 15.8 (2.0) 23.2 (5.3) 32.7 (7.9)

NVB 13.6 (2.1) 21.9 (5.3) 24.5 (6.5) 25.3 (10.9)

TABLE II
AVERAGE COMPLETION TIME IN SECONDS FOR TASK 2 IN EACH OF THE

EIGHT CONDITIONS, WRITTEN AS MEAN (STANDARD DEVIATION).

effect of memorization load (F (1, 38) = 9.137, p < 0.01)
and a statistically significant interaction between memoriza-
tion and NVB (F (1, 38) = 4.713, p < 0.05). Figure 7
illustrates this significant interaction. There was also a bor-
derline significant interaction between interruption and NVB
(F (1, 38) = 3.397, p < 0.1) and a borderline significant three-
way interaction among memorization, interruption, and NVB
(F (1, 38) = 3.278, p < 0.1).

We investigate this three-way interaction with tests of simple
effects, which reveal how one variable influences the others.
First, we conduct a test for simple two-way interactions
between interruption and NVB for each level of memorization.
This simple two-way interaction yielded a significant effect
for high memorization (F (1, 38) = 6.554, p < 0.05), but
not for low memorization (F (1, 38) = 0.001, p = ns). This
indicates that in the high memorization case, the effect of
NVB on accuracy depends on whether an interruption occurs.
Investigating the interaction further, we run a test of simple
simple main effects. We find a statistically significant effect
of NVB on accuracy in the interruption absent condition
(F (1, 38) = 9.466, p < 0.01) but not in any other conditions.

To evaluate the effect of our second objective measure,
completion time, we conducted a similar three-way ANOVA.
For this test, we excluded the timing data from one participant
whose response time (89 seconds) was an extreme outlier (> 3
SD from the mean). The test revealed a significant effect of
interruption (F (1, 37) = 8.629, p < 0.01) and memorization
(F (1, 37) = 31.490, p < 0.001). It also identified a border-
line significant interaction between memorization and NVB
(F (1, 37) = 3.161, p < 0.1) and a borderline significant three-
way interaction between memorization, interruption, and NVB
(F (1, 37) = 3.362, p < 0.1).

As with accuracy, we further investigate this three-way in-
teraction with a test of simple effects. Testing for a simple two-
way interaction between interruption and NVB did not yield
significance for high memorization (F (1, 37) = 2.639, p =
ns) or low memorization (F (1, 37) = 0.917, p = ns) condi-
tions. However, a test of simple simple main effects showed
a statistically significant influence of NVB on completion
time for participants in the high memorization condition when
an interruption occurred (F (1, 37) = 4.330, p < 0.05), but
not without an interruption (F (1, 37) = 0.101, p = ns).
In other words, in the high memorization condition, NVB
mitigated the effects of the interruption on task completion
time (Figure 8). There was no effect of NVB on the low
memorization condition, either with or without an interruption.



Fig. 7. Accuracy of recall by memorization and NVB conditions. The
interaction is significant (p < 0.05), indicating that NVB helped mitigate
the difficulty of the task.

Fig. 8. Completion times for interruption and NVB conditions, shown for the
high memorization condition only. There is a significant simple simple main
effect of NVB on completion time when an interruption occurs (p < 0.05)
but not without an interruption.

B. Subjective Measures

Our subjective measure was user perception of the robot
in terms of anthropomorphism, animacy, likeability, and per-
ceived intelligence. Each of these four items was measured by
five or six Likert-type questions provided in a questionnaire.
The items all had high internal consistency as determined by
a Chronbach’s alpha greater than 0.7.

We conducted a one-way ANOVA to determine if there
were differences in people’s responses to the four question-
naire items depending on which of the eight conditions they
experienced. None of the experimental variables had statis-
tically significant effects on these items (anthropomorphism:
F (7, 38) = 0.510, p = ns; animacy: F (7, 38) = 0.159, p =
ns; likeability: F (7, 38) = 1.096, p = ns; intelligence:
F (7, 38) = 1.621, p = ns).

VI. DISCUSSION

Objective measure results show that NVB has little effect on
tasks that are already easy, but that when tasks become chal-
lenging, NVB improves people’s performance by increasing
recall accuracy and decreasing completion times.

Hypothesis H1 predicted that task performance (in terms of
recall accuracy and completion times) would improve when a
robot provided task instructions both verbally and with deictic
NVBs, over only providing instructions verbally. H1 is not
supported in the general case, because the results do not show a
statistically significant effect of NVB across all memorization
and interruption conditions.

However, there is a significant interaction effect between
NVB and memorization load for both recall accuracy and
completion time. This supports H2: in low memory (easier)
cases, NVB has no effect on recall or completion time, but in
high memory (harder) cases, NVB increases recall accuracy
and lowers completion time significantly.

The interaction between NVB and interruption is also
significant for completion time and borderline significant for
recall accuracy. Again, this supports H2, because NVBs had
a positive effect on performance only when there was an
interruption that made the task difficult.

Unexpectedly, the hardest condition (interruption present,
high memory load) had high recall accuracies in the NVB ab-
sent case, leading to statistically indistinguishable performance
on NVB present and absent trials. A t-test comparing recall
accuracy between NVB present and absent conditions shows
that NVB significantly increases accuracy when interruption
is absent (p < 0.05), but not when interruption is present
(p = ns). The fact that there is no statistical difference
between NVB present and absent for the interruption condition
does not invalidate H2, but it fails to provide additional support
for that hypothesis.

Subjective measure results were inconclusive. H3 predicted
that subjective evaluations of a robot’s anthropomorphism,
animacy, likeability, and intelligence would increase when the
robot used deictic NVBs over when it didn’t. Our results do
not support H3, because none of the items on the questionnaire
reached significance.

This result is in contrast with other studies, which have
shown that subjective perceptions of a robot are improved
when the robot uses NVBs [8], [18]. While the current study
only uses deictic NVBs, however, the previous studies also
used expressive NVBs such as iconic or metaphoric gestures
[3]. These types of gestures involve producing a visual rep-
resentation of physical or abstract concepts, such as moving
the hand up and down for “chopping” or signaling over the
shoulder for “a long time ago.” It may be that deictic behaviors
do not elicit the same kind of perceptions of agency in a robot
as other, more expressive gestures.

From the results, the difficulty manipulations used in this
study (“low” or “high” memorization load, and “present” or
“absent” interruption) seem approximately equally difficult.
Recall accuracy is slightly worse for low memory, interrupted
tasks (89%) than for high memory, uninterrupted tasks (92%),
while task completion times are slightly worse for high mem-
ory, uninterrupted tasks (24.5 seconds) than for low memory,
interrupted tasks (21.9 seconds). One limitation of our study is
that it only uses two levels for the two difficulty manipulations.
Future work could investigate a range of difficulty levels to



identify whether NVB helps even more with more difficult
tasks and whether the effect plateaus at any point.

One novel feature of this study is the real time nonverbal
behavior model that controlled the robot’s actions. Because
the model recalculated attention likelihood scores when blocks
moved, the NVB a participant saw was specifically targeted
toward the scene in front of them. As the results show, this
NVB was effective in mediating the effects of a difficult task.

A primary principle of the behavior generation model is
that too much NVB can be a hindrance to comprehension.
This experiment did not evaluate this claim directly. A future
study comparing NVBs produced by the model to other NVB
generation models would elucidate how the scene-based model
used here compares to other systems that potentially produce
more NVBs during an interaction.

We do not claim that our model provides optimal behavior
generation for spatial references. However, our model per-
forms at least a subset of the optimal behaviors for nonverbal
communication, as determined by the improvement of recall
accuracy and completion times. Better results may be possible
with a different behavior generation model, and future studies
comparing such models would help identify what kinds of
NVBs are useful in human-robot collaborations.

Additions to the model might improve its performance. For
example, once a robot has named an object by pointing to it,
the need to deictically refer to that object again may decrease
for a short time afterward. This would add a “prior reference”
factor in the likelihood equation, which would increase the
likelihood of an object if it has been recently referenced. This
factor can decay over time to capture the temporal dynamics
of attention. This and other modifications to the model could
generate even more natural NVBs.
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