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ABSTRACT
We explore the probabilistic foundations of onboard shared
control in complex dynamic environments. In order to do
this, we formulate shared control as a random process and
describe the joint distribution that governs its behavior.
This shared control model is a natural extension of the ap-
proach to fully autonomous navigation in human crowds
detailed in [25, 23, 24]. We discuss how the probabilistic
model relates to the current state of the art in shared con-
trol, called “linear blending”, and prove the following. First,
we recover linear blending as a special case of our proba-
bilistic approach, and in the course of the proof, show what
restrictions linear blending imposes. Second, linear blending
treats the operator inputs deterministically and implemen-
tations can be brittle since they are prone to input device
noise or operator jitter. Furthermore, since the operator
model is limited to the present time, jointly reasoning over
future operator-robot configurations is impossible. In gen-
eral, we find that for complex dynamic environments linear
blending is an inappropriate approach: it is prone to either
overriding the operator (i.e., resorting to full autonomy),
ceding complete control to the operator (i.e., resorting to full
teleoperation), or generating unsafe shared control protocols
from safe operator and safe autonomy input. Probabilistic
shared control, in contrast, is able to find solutions that are
consistently safe and in agreement with the operator. Fur-
thermore, the probabilistic approach is able to achieve such
superior solutions in a data driven way—that is, without
employing anecdotal heuristics.

1. INTRODUCTION
Fusing human and machine capabilities has been an active
research topic in computer science for decades. In robotics
related applications, this line of research is often referred
to as shared autonomy (although “flexible autonomy” and
“blended autonomy” are often used interchangeably with
shared autonomy). While shared autonomy has been ad-
dressed in toto, it can be broken down into more specialized
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Figure 1: Diagram depicting the random processes and re-
lationships between those random processes. Below the dia-
gram is the shared control distribution, color coded to match
the diagram.

areas of research. In particular, some researchers focus on
the fusing of human and machine “perception” (or sensing).
This line of inquiry has seen a great deal of interest in the hu-
man factors community [19], in particular. Similarly, a great
deal of research has focused on fusing human and machine
“decision making” in the machine learning [31, 17], control
theory [12], and human robot interaction communities [14].

Under the umbrella of shared decision making, an even
more focussed line of research has emerged: shared control,
whereby the moment to moment control commands sent to
the platform motors are a synthesis of human input and au-
tonomy input. Broadly speaking, shared control has been
deployed in two cases: shared teleoperation (where the hu-
man operator is not co-located with the robot) and onboard
shared control (where the human operator is physically on
the robot). Shared teleoperation has seen activity in a num-
ber of application areas: search and rescue robots [4] and
extraterrestrial robotics [2] are just two examples.

Onboard shared control has likewise enjoyed a wide vari-
ety of use cases: assistive wheelchair technology [13], assis-
tive automobile driving, and assistive manufacturing vehicle
operation (e.g., forklifts) are just a few of the examples. For
any of these cases, shared control can be broken down into
an autonomous modeling step, a human modeling step, and
a human-machine arbitration step (see [10] for a compelling
argument justifying this classification scheme).

In this paper, we explore the probabilistic foundations of
onboard shared control in the presence of dynamic obsta-
cles (e.g., the crowd)—see Figure 1 for an illustration of our
model. In order to do this, we formulate shared control as



a random process and describe the joint distribution (over
the operator, autonomy, and crowd) that governs behavior.
We then propose a tractable model of the full joint distri-
bution and discuss how both this model and the full joint
distribution relates to the current state of the art in shared
control, called “linear blending.” In particular, we show how
linear blending can be interpreted as a special case of prob-
abilistic shared control, and in the process, observe a num-
ber of things: first, in linear blending the operator is often
not modeled, and so there is no flexibility in how operator
commands are interpreted during optimization of the joint
distribution. Thus, if the operator inputs are noisy or mis-
leading, we have no way to account for this. Second, in linear
blending, the autonomy reasons independently of the opera-
tor during optimization, so even if we had a precise operator
model, the autonomy would not be informed of this informa-
tion until after the optimization. Third, in linear blending,
the autonomy is limited to a single optimal decision, which is
then averaged with the operator input—this approach leaves
no flexibility in how the autonomy might assist the user.
Next, we present an extension of linear blending that can
accommodate more than one statistic about the user (e.g.,
user inferred goal information, preferred trajectories, etc),
and find that state of the art approaches to this problem are
statistically unsound. To this end, we present a statistically
valid model for how to properly condition the autonomy on
user statistics. We conclude with an examination of linear
blending in complex dynamic environments and find that it
is inappropriate for such situations. We similarly examine
the probabilistic model in complex dynamic environments
and discover that it is flexible enough to maintain safety in
crowds while acting agreeably with the operator.

2. RELATED WORK
We begin by defining the arbitration step of linear blending:

us
LB(t) = Khu

h
t +KRu

R
t+1, (2.1)

where, at time t, us
LB(t) is the linearly blended shared con-

trol command sent to the platform actuators, uh
t is the hu-

man operator input (joystick deflections, keyboard inputs,
etc.), uR

t+1 is the next autonomy command, and Kh,KR

are the operator and autonomy arbitration parameters, re-
spectively. To ensure that the magnitude of us

LB(t) does
not exceed the magnitude of uh

t or uR
t+1, we require that

Kh +KR = 1.
This linear arbitration model has enjoyed wide adoption

in the assistive wheelchair community ([29, 18, 28, 32, 20,
27, 16, 5]). More generally, shared control path planning re-
searchers have widely adopted Equation 2.1 as a de-facto
standard protocol—see [10, 9] for an extensive argument
about how “linear policy blending can act as a common lens
across a wide range of literature”. Additionally, the work of
[21, 30] advocates the broad adoption of a linear arbitration
step for shared control.

For the purposes of this article, we describe how each
quantity of Equation 2.1 is computed:

1) Collect the data at time t: uh
1:t are the historical opera-

tor inputs. zR
1:t are the historical measurements of the state

of the robot (such as odometry, localization, SLAM output,
etc).

2) Compute the autonomous input uR
t+1: This quantity

may be computed using nearly any off the shelf planning al-
gorithm, and is dependent on application. The “Dynamic

Window Approach” [11] and “Vector Field Histograms+”
[26] are popular approaches to perform obstacle avoidance
for wheelchairs. Sometimes, the autonomy is biased accord-
ing to data about the operator—for instance, one might
imagine an offline training phase where the robot is taught
“how” to move through the space, and then this data could
be agglomerated using, e.g., inverse optimal control. Alter-
natively, one might bias the autonomous decision making by
conditioning the planner on the predicted or known human
goal.

3) Compute the arbitration parameters Kh and KR. A
wide variety of heuristics have been adopted to compute
this parameter: confidence in robot trajectory, smoothness,
mitigating jerk, operator reliability, user desired trajectories,
safeguarding against unsafe trajectories, etc. Indeed, much
of the shared control literature is devoted to developing novel
heuristics to compute this parameter.

4) Compute the shared control us
LB(t) using Equation 2.1.

In the references above, the data uh
1:t are interpreted literally—

no likelihood or predictive model filters this data stream.
In other approaches, operator intention is modeled using a
combination of dynamic Bayesian networks and/or Gaussian
mixture models.

For this paper, we adopt the notation zh
t
.
= uh

t , (we treat
operator inputs as measurements of the operator trajectory,
h : t ∈ R → X , where X is the action space). Similarly,
we define measurements zR

1:t of the robot trajectory fR and
measurements zi

1:t of the i’th static or dynamic obstacle tra-
jectory f i. We thus work in the space of distributions over
the operator function h, autonomy function fR, and crowd
function f = (f1, . . . , fnt), measured through zf

1:t. The inte-
ger nt is the number of people in the crowd at time t.

We comment on the work of [7, 15, 8]. In these papers, the
authors construct a probabilistic model over user forward
trajectories (i.e., a specific and personalized instantiation
of p(h | zh

1:t)). They then formulate shared control as a
POMDP, in order to capture the effects of robot actions
on the probabilistic model of the operator. However, for
tractability of the POMDP, the autonomy is limited to only
choosing from the next available state—this makes assistive
navigation through crowds impossible (as shown in [24]).
Further, the potential autonomous actions are limited by
the input device; in one application, the autonomy was only
able to reason over 9 directions. As we discuss in Section 6,
limiting the autonomy to such a substantial degree can have
substantial effects on performance.

3. FOUNDATIONS AND IMPLEMENTATION
OF PROBABILISTIC SHARED CONTROL

As stated in Section 1, we seek to explore the probabilis-
tic foundations of assistive onboard shared control; we thus
posit that

us(t) = fR
∗

t+1

(h, fR, f)∗ = arg max
h,fR,f

p(h, fR, f | zh
1:t, z

R
1:t, z

f
1:t). (3.1)

That is, assistive onboard shared control is the MAP value
of the joint distribution over the operator, autonomy, and
crowd.

We suggest this approach partly based on what we have
learned from fully autonomous navigation in human crowds
in [23], and partly based on the following: by formulat-



ing shared control as the MAP value of a joint probability
distribution, we can directly explore fundamental modeling
limitations imposed by the linear blending approach, and
thereby explore what consequences these modeling assump-
tions have on performance.

In the remainder of this section, we explain how the ap-
proach in Equation 3.1 is a natural extension of our previous
work in [25], and present a tractable model of the joint dis-
tribution over the operator, autonomy, and crowd. We use
the probabilistic graphical model in Figure 2 to guide our
derivation.

Definition 1. A cooperative human crowd navigation model
(as in [25]) is described by

p(fR, f | z̄1:t) = ψ(fR, f)p(fR | zR
1:t)

nt∏
i=1

p(f i | zi
1:t) (3.2)

where z̄1:t = [zR
1:t, z

f
1:t], ψ(fR, f) is the crowd potential func-

tion, and p(fR | zR
1:t), p(f

i | zi
1:t) are the robot and crowd in-

dividual kinematic functions, respectively. The correspond-
ing graphical model is presented on the left hand side of Fig-
ure 2.

Definition 2. A probabilistic shared control (PSC) model
in the presence of static or dynamic obstacles is

p(h, fR, f | z1:t) ∝ ψ(h, fR)p(h | zh
1:t)p(f

R | zR
1:t)

nt∏
i=1

p(f i | zi
1:t)

= ψ(h, fR)p(h | zh
1:t)p(f

R, f | z̄1:t) (3.3)

where p(h | zh
1:t) is the predictive distribution over the op-

erator, zh
1:t is data generated by the operator, and ψ(h, fR)

is the potential function between the operator and the robot.
For the purposes of this article, we choose

ψ(h, fR) = exp(− 1

2γ
(h− fR)(h− fR)>).

The corresponding graphical model is presented on the right
hand side of Figure 2. We note that the term γ captures how
“tightly” the autonomy is coupled to the operator.

We note that this approach is an approximation to the full
posterior p(h, fR, f | z1:t); this approximation is motivated
by our previous work in [24]. Additionally, we choose to not
include the dynamic environment f in the potential function
ψ(h, fR) because modeling operator to crowd interactions is
not well understood at this point (e.g., an operator yelling
at the crowd might be difficult to both sense and difficult for
the autonomy to respond to; we defer such models to later
work).

4. LINEAR BLENDING AS A PROBABILIS-
TIC SHARED CONTROL MODEL

In order to understand linear blending in the context of
Equation 3.1, we begin by considering the conditioning re-
lationships of the full joint distribution:

p(h, fR, f | z1:t) = p(fR, f | zR
1:t, z

f
1:t,h)p(h | zh

1:t).

To understand how the linear abitration modeling assump-
tions effect the full joint, we first insert the linear blending

Figure 2: The correspondence between the fully autonomous
cooperative collision avoidance model of [25] and Equa-
tion 3.2 (left hand side), and the model of probabilistic
shared control in Equation 3.3.

operator model: p(h | zh
1:t) = δ(h− zh

t ). Thus,

p(h, fR, f | z1:t) = p(fR, f | zf
1:t, z

R
1:t,h)δ(h− zh

t )

= p(fR, f | zf
1:t, z

R
1:t, z

h
t ).

In this case,

arg max
h,fR,f

p(h, fR, f | z1:t) = arg max
fR,f

p(fR, f | zf
1:t, z

R
1:t, z

h
t ).

Because this distribution is already conditioned on zh
t ,

there is no need for a linear arbitration step (we will see
this explicitly in Theorem 4.1). Furthermore, by fixing the
operator state at zh

t , we are no longer jointly optimizing over
the autonomy and the operator.

Theorem 4.1 (Equation 3.1 generalizes linear blending).
Let

p(fR, f | zf
1:t, z

R
1:t, z

h
t ) = ψh(zh

t , f
R
t+1)p(fR, f | z̄1:t)

and suppose that we use Laplace’s Approximation [3] to model
the autonomous part of the distribution:

p(fR, f | z̄1:t) = N (fRt+1 | ¯fRt+1,σ
R).

where ¯fRt+1 is a mode of the distribution. Then the proba-
bilistic shared control is

us
PSC(t) = σ(

1

γ
zh
t +

1

σR
¯fR)

where σ−1 = (γ−1+(σR)−1) and γ is the operator-autonomy
attraction parameter.

Proof. We compute

us(t) = arg max
h,fR,f

p(h, fR, f | z1:t)

∝ arg max
h,fR,f

N (fRt+1 | zh
t , γ)N (fRt+1 | ¯fRt+1,σ

R)

= arg max
fRt+1

N (fRt+1 | µ,σ) (4.1)

= σ(
1

γ
zh
t +

1

σR
¯fR)



where

µ = σ(
1

γ
zh
t +

1

σR
¯fR)

σ−1 = (γ−1 + (σR)−1).

We now examine the how the assumptions of linear blend-
ing can effect performance. First, the constraint p(h | zh

1:t) =
δ(h − zh

t ) can lead to very brittle implementations. In the
presence of noisy input, for instance, using the unfiltered
data zh

t can cause the shared control to oscillate with the in-
put noise (or the jitter of the operator). Furthermore, since
the operator model is limited to the present time, jointly
reasoning over future operator-robot configurations is im-
possible. For many applications, blending the autonomy
with the human’s trajectory can be critically important to
instantiate fluid sharing.

Further, the assumption that the joint robot-crowd distri-
bution is a unimodal Gaussian p(fR, f | zR

1:t, z
f
1:t) = N (fRt+1 |

¯fRt+1,σ
R
t+1) can lead to severe restrictions in shared control

capability; even though a locally optimal autonomy strategy
¯fR is included in the linear blend us

LB ∝ Khzh
t +KR

¯fRt+1,
there is no guarantee that the human operator will choose
this optima, or even a nearby optimum.

By maintaining the multitude of hypotheses inherent to
p(fR, f | z̄1:t), we greatly increase the possibility that the
autonomy will be able to assist the operator in a way that
is both desirable and safe. As an example, linear trajectory
blending over a safe operator input and a safe autonomous
input can result in an unsafe shared trajectory. That is, the
weighted average of two safe trajectories can be averaged
into an unsafe trajectory.

Importantly, the issue of averaging two safe trajectories
into an unsafe one has been addressed in the literature us-
ing a heuristic called“safeguarding”(e.g., discard shared tra-
jectories that are unsafe, and recompute a safe trajectory—
perhaps stopping the platform entirely—as in [6]). However,
as with any heuristic, safeguarding begs the question: can we
develop an arbitration protocol that avoids this emergency
protocol? Furthermore, safeguarding has the potential for
causing frozen operator-autonomy states: suppose the safe-
guard chooses to stop the platform, but the operator does
not understand why the platform has stopped. If the plat-
form is stopped and the environment is not moving (either a
standing crowd or a cluttered obstacle field), then the auton-
omy will continue to compute the same optima, and so long
as the operator continues to insist on the same input that
triggered the safeguard, the platform will not move. In this
case, a forward shared control solution exists, but because
linear blending only considers a single autonomy strategy,
the discord between the operator and the autonomy cannot
be resolved.

5. CONDITIONAL TRAJECTORY BLEND-
ING

In this section, we extend our definition of linear blending
to capture the salient characteristics of recent approaches;
broadly speaking, this line of work seeks to include addi-
tional data about the operator during the arbitration step.
Further, we introduce a probabilistic model, called condi-
tional trajectory blending, that is able to incorporate any

information about the operator in a statistically principled
way.

Definition 3 (Extending Equation 2.1). Let
1) h̄ ∼ p(h | zh

1:t) be defined through time T > t, such that
h̄ : [1, T ] ⊂ R 7→ X ,

2) ¯fR ∼ p(fR, f | zR
1:t, z

f
1:t), with ¯fR : [1, T ] ⊂ R 7→ X ,

3) us
LTB be the shared control us

LTB : [1, T ] ⊂ R→ X ,
4) and Kh,KR be the arbitration parameters, similar to

the arbitration parameter of Section 2.

Definition 4 (LTB). Linear Trajectory Blending (LTB)
is the process

1) Sample the autonomy ¯fR = arg maxfR,f p(f
R, f | zR

1:t, z
f
1:t).

2) Sample the operator h̄ = arg maxh p(h | zh
1:t).

3) Construct the shared control

us
LTB = K(

1

Kh
h̄ +

1

KR

¯fR). (5.1)

By extending to trajectories, we can more easily incorporate
operator information into the arbitration step. In this vein,
we now define an extension of linear trajectory blending that
biases the autonomous decision making on operator data
(motivated by the approach in [10]).

Definition 5 (LTBo). Let p(G | zh) be a distribution
about the operator, where zh ⊆ zh

1:t. Then operator biased
linear trajectory blending (LTBo) is the process

1) Sample G1 = arg maxG p(G | zh). G1 could be a full
predicted trajectory, a waypoint, a goal, or any other appro-
priate quantity.

2) Sample the operator biased distribution

¯fRh = arg max
fR,f

p(fR, f | zR
1:t, z

f
1:t, G1).

3) Sample the operator trajectory h̄ = arg maxh p(h |
zh
1:t).
4) Construct the shared control

us
LTBo = K(

1

Kh
h̄ +

1

KR

¯fRh).

With these definitions, we extend the approach of Equa-
tion ?? to include 1) a model of the operator p(h | zh

1:t) and
2) to enable seeding the autonomy with information about
the operator. By modeling the operator with a distribution,
we potentially bypass the issue of noisy inputs leading to
“jittery” linear blends. Also, by seeding the autonomy with
operator statistics, we can potentially drive the autonomy
towards solutions that are more closely aligned with user
desire.

While this approach is sensible, it is not immediately clear
why we should extend linear blending in such a way. We
thus pause to examine this approach in the context of the
full joint distribution. In particular, we note that

p(h, fR, f | z1:t) = p(fR, f | zf
1:t, z

R
1:t,h)p(h | zh

1:t). (5.2)

If we were to only sample a single statistic of the operator
distribution h̄ = arg maxh p(h | zh

1:t), then we are implicitly
making the modeling assumption that p(h | zh

1:t) = δ(h−h̄);
thus we have

p(h, fR, f | z1:t) ∝ p(fR, f | zf
1:t, z

R
1:t,h)δ(h− h̄)

= p(fR, f | zf
1:t, z

R
1:t, h̄).



In this case,

arg max
h,fR,f

p(h, fR, f | z1:t) = arg max
fR,f

p(fR, f | zf
1:t, z

R
1:t, h̄),

and so (as before) there is no need for a linear arbitration
step—we have already conditioned the autonomy on the
operator, and we can recover linear blending by choosing
p(fR, f | zf

1:t, z
R
1:t, h̄) as in Theorem 4.1. If we have a sep-

arate model p(G | zh) about the operator, we know that
it does not contain information beyond what is available in
p(h | zh

1:t), since zh ⊆ zh
1:t (see the discussion on the “data

processing inequality” in [22]). With the definition below,
we show how to combine multiple operator data points in a
statistically sound manner.

Definition 6 (Conditional Trajectory Blending).
Assume that we have the distributions p(h | zh

1:t) and p(fR, f |
zf
1:t, z

R
1:t,hb). Then let {hb}Nh

b=1 ∼ p(h | zh
1:t) be a collection

of Nh samples of the operator model. If we take the model
of the operator to be p(h | zh

1:t) =
∑Nh

b=1 w
bδ(h− hb), then

p(h, fR, f | z1:t) = p(fR, f | zf
1:t, z

R
1:t,h)p(h | zh

1:t)

= p(fR, f | zf
1:t, z

R
1:t,h)

Nh∑
b=1

wbδ(h− hb)

=

Nh∑
b=1

wbp(fR, f | zf
1:t, z

R
1:t,h

b) (5.3)

where wb = p(hb = h | zh
1:t) is the probability of sample hb.

We interpret the shared control to be

us
CTB = arg max

fR,f

Nh∑
b=1

wbp(fR, f | zf
1:t, z

R
1:t,h

b).

In particular, we revisit the case of LTBo: suppose that we
sample G1 ∼ p(h | zh

1:t)—G1 is present in this distribution
since it contains all the data—and then sample h̄ ∼ p(h |
zh
1:t). Then conditional trajectory blending tells us that we

should find the arg max of the distribution

us
CTB = arg max

fR,f

[
w1p(fR, f | zf

1:t, z
R
1:t, G1)+

w2p(fR, f | zf
1:t, z

R
1:t, h̄)

]
.

In general, then, us
CTB 6= us

LTBo; however, since conditional
trajectory blending is derived directly from the full joint
we know that it is combining the data G1, h̄ in a statisti-
cally sound manner. The next theorem provides informa-
tion about the limiting behavior of conditional trajectory
blending.

Theorem 5.1 (CTB approximates PSC). As the num-
ber of operator samples tends to infinity, probabilistic shared
control (Equation 3.1) is recovered.

Proof. Representing p(h | zh
1:t) =

∑∞
b=1 w

bδ(h− hb),

p(h, fR, f | z1:t) = p(fR, f | zR
1:t, z

f
1:t,h)p(h | zh

1:t)

= p(fR, f | zR
1:t, z

f
1:t,h)

∞∑
b=1

wbδ(h− hb)

=

∞∑
b=1

wbp(fR, f | zR
1:t, z

f
1:t,h

b).

It is important to emphasize that conditioning the auton-
omy on operator statistics and then averaging ¯fRh with a
separate operator statistic h̄ is not just unnecessary, but po-
tentially statistically unsound as well, since it is unclear how
such an approach originates from Equation 5.2.

Lemma 5.2 (LTB statistically unsound). LTB is not
guaranteed to incorporate data in a statistically sound man-
ner.

Proof. Suppose that one were to sample h̄ ∼ p(G | zh),
then sample h̄ = arg maxh p(h | zh

1:t), then compute ¯fRh,
and then compute Khh̄ + KR

¯fRh. Since we have incorpo-
rated h̄ twice in the linear blend, the data has been overused.
One could potentially compensate for this by“removing” the
effect of double usage of h̄ in Kh, but it is unclear how to
do this in a statistically sound manner.

Thus, if we have a model of p(fR, f | zR
1:t, z

f
1:t,h

b) and
a model of the operator p(h | zh

1:t), we have a clear man-
date (under the probabilistic line of reasoning) for how to
correctly formulate our shared control algorithm.

6. OPTIMALITY OF SHARED CONTROL
Consider the following Gaussian sum approximations:

p(h | zh
1:t) =

Nh∑
m=1

N (h | µm,Σm)

and

p(fR, f | z̄1:t) =

NR∑
n=1

N (fR | µn,Σn).

Then we have that

ψh(h, fR)p(h | zh
1:t)p(f

R, f | z̄1:t)

≈ ψh(h, fR)

Nh∑
m=1

αmN (h | µm,Σm)

NR∑
n=1

βnN (fR | µn,Σn),

(6.1)

and as Nh, NR →∞ and the covariances Σm,Σn approach
the zero matrix (e.g., as the Gaussian sums approach sums
of Dirac samples), we recover the densities p(h | zh

1:t) and
p(fR, f | z̄1:t)—see [1]. We note that the approximation∑NR

n=1 βnN (fR | µn,Σn) consists of only safe modes, since

ψf (fR, f) will assign near zero β to any modes that are on
a collision course. This is not true for the Gaussian mixture
assigned to the operator, since the operator may very well
make choices which place the platform on a collision course
(resolving such situations are a key functionality of assistive
shared control).

From Theorem 4.1, we know that linear trajectory blend-
ing makes the assumption that

ψh(h, fR)p(h | zh
1:t)p(f

R, f | z̄1:t)

= ψh(h, fR)δ(h− h̄)N (fR | ¯fR,Σ)

= ψh(h̄, fR)N (fR | ¯fR,Σ).

That is, NR = 1, with mean chosen at the largest mode of
the Gaussian sum, and Nh = 1 with mean chosen at the
largest mode of the Gaussian sum, with zero covariance. If
these conditions are true (one mode of the autonomy-crowd



distribution dominates, and one mode of the operator dis-
tribution dominates and has small covariance), then us

LTB

is the optimal solution.

h̄

N (fR | fR⇤,⌃1)N (fR | µR
2 ,⌃2)

Goal

Start

Obstacles

Figure 3: One global autonomy optima at fR∗ and a safe
but suboptimal autonomy mode at µR

2 through some obsta-
cle field (additional autonomous modes exist but we leave
them off for clarity). The operator’s unimodal predicted
trajectory at h̄ is safe. Covariance functions removed for
clarity.

However, if these conditions are not met—in crowds, for
instance, many modes of p(fR, f | z̄1:t) have significant weight—
then us

LTB is not the optimal solution. Further, for situa-
tions in which the operator trajectory may exhibit multi-
modality (Figure 5), us

LTB is again not the optimal solu-
tion. Importantly, then, linear trajectory blending insuffi-
ciently addresses scenarios in which either the autonomous
distribution or the operator distribution is multimodal.

To understand why this is important, first consider the
illustration in Figure 3. Suppose that there are two nontriv-
ial safe modes that pass through the obstacle field: N (fR |
fR∗,Σ1) and N (fR | µR

2 ,Σ2). Thus

ψh(h, fR)p(h | zh
1:t)p(f

R, f | z̄1:t)

= ψh(h̄, fR)[β1N (fR | fR∗,Σ1) + β2N (fR | µR
2 ,Σ2)]

=
β1
Z1
N (fR | f̄R∗, Σ̄1) +

β2
Z2
N (fR | µ̄R

2 , Σ̄2)

where β1 > β2 (since the first mode is the global optima),
and the means and covariances in the last line are of the
form of Equation 5.1. However

1

Z1
∝ exp

(
−1

2

(
h̄− fR∗

)>
(γ + Σ1)−1

(
h̄− fR∗

))
1

Z2
∝ exp

(
−1

2

(
h̄− µ2

)>
(γ + Σ2)−1 (h̄− µ2

))
,

and so 1/Z1 is exponentially smaller than 1/Z2 since h̄−fR∗

is much larger than h̄ − µ2. Thus, the probabilistic shared
control in this situation is very close to both µR

2 and h̄.
Conversely, us

LTB ∝ Khh̄ + KRfR∗. Here, if Kh is close
to KR, then us

LTB is unsafe and thus safeguarding has to be
employed. If KR � Kh, then the autonomy unnecessarily
overrides the operator’s (safe) choice. If Kh � KR, then
the operator is controlling the platform, and is thus not not
being assisted. The question underlying these three cases is

the following: what heuristic should be employed to choose
Kh and KR? By carrying multiple modes (as in probabilistic
shared control), we bypass this dilemma, since heuristics are
never invoked: basic rules of probability theory (namely,
the normalizing factor) determine the best choice. In other
words, probabilistic shared control is able to determine the
shared control in a data driven way rather than through
anecdote.

h̄

N (fR | fR⇤,⌃1)N (fR | µR
2 ,⌃2)

Goal

Start

Obstacles

Figure 4: One global autonomy optima at fR∗ and a safe
but suboptimal autonomy mode at µR

2 through some obsta-
cle field (additional autonomous modes exist but we leave
them off for clarity). The operator’s unimodal predicted
trajectory at h̄ is unsafe. Covariance functions removed for
clarity.

In Figure 4, we illustrate a very similar situation, except
this time, the operator has chosen an unsafe trajectory. For
linear trajectory blending, us

LTB ∝ Khh̄+KRfR∗, and so we
must choose our heuristics such that KR � Kh in order to
avoid collision—that is, we must insert logic that overrides
the operator when the operator makes unsafe decisions.

In contrast, consider

ψh(h, fR)p(h | zh
1:t)p(f

R, f | z̄1:t)

= ψh(h, fR)p(h | zh
1:t)×

[β1N (fR | fR∗,Σ1) + β2N (fR | µR
2 ,Σ2)]

= ψh(h, fR)N (h | µh,Σh)×

[β1N (fR | fR∗,Σ1) + β2N (fR | µR
2 ,Σ2)]

where we have maintained both modes and also maintained
a unimodal distribution over h (rather than choosing the
delta approximation). In this situation, β1 is close to β2,
and the difference between the operator mean and either
of the autonomy means are nearly the same, so Z1 is close
to Z2. However, both Σ1 and Σ2 are both fairly narrow
(otherwise, they are not safe modes), and because there is
flexibility in p(h | zh

1:t), the MAP value is close to either
fR∗ or µR

2 . Because the operator is treated probabilistically,
there is no need to employ heuristics to detect poor operator
choices: the autonomy assists the operator by blending near
the tails of p(h | zh

1:t).
Finally, consider the situation in Figure 5. In this case,

the operator has generated ambiguous data about how he
wishes to move between the start and the goal, and so two
modes carrying similar weights is the proper representation



(although the mode centered at h̄ is taken to be near the
MAP of p(h | zh

1:t)). For linear blending, we have us
LTB ∝

Khh̄+KRfR∗ and so we end up with a situation very similar
to that discussed in Figure 3—an autonomy and an operator
that are needlessly in disagreement, and thus difficult to
disambiguate with the heuristics Kh and KR. To be fair,
if h̄ and fR∗ happen to lie close to one another, then linear
blending provides the optimal solution—but for multimodal
autonomous and operator distributions, such a situation is
the exception rather than the rule (this exception requiring
that the operator make globally optimal decisions).

For probabilistic shared control, the shared control is likely
a trajectory near h̄ and µR

2 —a solution that is both safe and
preserves the operator’s desires. However, depending on the
weights αm and βn the solution may end up as a blend of
µh

2 and µR
3 —again, a solution that reflects the operator’s

desires and is still safe.

Goal

Start

Obstacles

N (h | µh
2 ,⌃h

2 )

N (fR | fR⇤,⌃R
1 )N (fR | µR

2 ,⌃R
2 )

N (h | h̄,⌃h
1 )

N (fR | µR
3 ,⌃R

3 )

Figure 5: One global autonomy optima at fR∗ and two safe
but suboptimal autonomy modes at µR

2 and µR
3 through

some obstacle field. The operator’s bimodal predicted tra-
jectory centered at h̄ and µh

2 . Covariance functions removed
for clarity.

The lesson of these three Figures is that for complex sce-
narios, linear blending can easily end up in situations that
cannot be disambiguated with heuristics. This is a result
of restricting the blend to the optimal autonomous decision
and the most likely operator desires, which can easily be in
conflict when nontrivial modes are not reasoned over. Prob-
abilistic shared control, in contrast, maintains these sub-
optimal modes, and is thus able to reach a solution that is
statistically principled, and is therefore safer and more likely
in agreement with the operator.

7. APPROXIMATE INFERENCE FOR PROB-
ABILISTIC SHARED CONTROL

We now describe how we use Monte Carlo sampling to esti-
mate the MAP value of our model

p(h, fR, f | z1:t) ∝

ψh(h, fR)ψf (fR, f)p(h | zh
1:t)

nt∏
i=R

p(f i | zi
1:t).

First, we draw a joint sample (h, fR, f)k = {hk, f
R
k , fk} from

each of the independent agent models:

• The operator model: hk ∼ p(h | zh
1:t)

• The robot dynamics model: fRk ∼ p(fR | zR
1:t)

• For each agent i in the crowd, draw f ik ∼ p(f i | zi
1:t).

We say that (h, fR, f)k ∼ p(h | zh
1:t)
∏nt

i=R p(f
i | zi

1:t), and
we have that

p(h | zh
1:t)

nt∏
i=R

p(f i | zi
1:t) ≈

Ns∑
k=1

w̄kδ[(h, f
R, f)− (h, fR, f)k]

where

w̄k = p(hk = h | zh
1:t)

nt∏
i=R

p(f ik = f i | zi
1:t).

We therefore have the approximation

ψh(h, fR)ψf (fR, f)p(h | zh
1:t)

nt∏
i=R

p(f i | zi
1:t)

= ψh(h, fR)ψf (fR, f)

Ns∑
k=1

w̄kδ[(h, f
R, f)− (h, fR, f)k]

=

Ns∑
k=1

w̄kψh(hk, f
R
k )ψf (fRk , fk)δ[(h, fR, f)− (h, fR, f)k].

(7.1)

In particular, we take the MAP value (h, fR, f)∗ to be the
sample with the largest weight w̄kψh(hk, f

R
k )ψf (fRk , fk). Im-

portantly, this approximate inference technique converges to
the distribution as Ns →∞.

We point out that Gaussian sums and Monte Carlo infer-
ence are closely related, and so the arguments in Section 6
are applicable here. Specifically, the convergence criteria
of Gaussian sums requires the covariance matrices of the
mixture components to go to zero—that is, each mixture
component becomes a sample. Furthermore, Monte Carlo
sampling is well suited to this kind of inference, as was vali-
dated in the real world implementation in [25]. For practical
reasons, the Gaussian sum approximation may very well be
better suited to this problem, and we intend on exploring
different approximate inference techniques in future papers.
In this paper, however, Monte Carlo sampling has the ap-
propriate properties to demonstrate our results.

8. CONCLUSIONS
In this paper, we presented an alternative formalism for

shared control. We showed how the state of the art in
shared control, linear blending, and some relevant gener-
alizations (linear trajectory blending) are both special cases
of our probabilistic approach. Further, we showed that lin-
ear blending is prone to statistical inconsistencies, but that
the probabilistic approach is not. Finally, we explored some
illustrative scenarios showing how linear blending is inap-
propriate for all but the most benign of circumstances, while
probabilistic shared control is able to properly model both
the operator and the autonomy in complex, dynamic envi-
ronments.
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